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Summary. A brief survey of the use of  operator inequalities in the modern 
quantum theory of  matter is given. In particular the Rayleigh-Ritz  variation 
principle is formulated in terms of operator inequalities, and the properties of 
outer and inner projections of  self-adjoint operators and especially the molecular 
Hamiltonian and its resolvent are discussed in some detail. 
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I. Introduction 

In her work on molecular quantum mechanics, quantum biochemistry, quantum 
biology, etc., Professor Alberte Pullman has made some of the most important 
and interesting applications of the new quantum theory of matter during the last 
few decades. In these practical treatments of many-electron systems in frameworks 
of  atomic nuclei, she has often needed intricate theoretical methods, and - in 
those cases when such tools were not available - she and her collaborators have 
created the necessary methodology. This paper on the importance of  operator 
inequalities in modern quantum theory is dedicated to Professor Alberte Pullman 
in view of her outstanding contributions also to the development of  new methods 
in the study of  large molecules. The author would also like to take this opportunity 
to thank Professor Alberte Pullman for her lectures on Quantum Biochemistry at 
the Florida Winter Institute in Quantum Chemistry and Solid-State Theory in the 
1960's and for her many excellent contributions to the yearly Sanibel Symposia 
over more than three decades and which are still going on. 

2. Definition of operator inequalities 

In this paper we will consider linear operators T defined on a Hilbert space 
= {x} having a positive definite binary product (x[y) with the property 
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(x  Ix)  i> 0 and with (x  Ix)  = 0 only for the zero-element x = J25. The operator T 
is said to have the domain D(T), if both x and Tx belong to the space W when 
x is in D(T). In addition to T, we will consider its adjoint operator T ~ defined 
through the relation (Tx  lY) = ( x [ T t Y )  • 

Since the time of von Neumann [1], operator inequalities have played an 
important rule in the formulation of quantum theory. They apply particularly to 
the self-adjoint operators A having the property A t = A, for which the expecta- 
tion values <A>=<xlAx>/<xlx>=<xlAlx>/<xlx> are by definition real 
quantities. Such an operator is said to be positive definite, if and only if 
<x [A ] x) > 0 for all x in the domain D(A) of A. For  such an operator, one uses 
the notation A > 0, where the symbol 0 represents the zero-operator, which 
relation is known as an operator inequality. 

More generally, if (x  [A [x)  > (x  ]B Ix)  for all x in the intersection between 
the domains D(A) and D(B), then one uses the notation A > B, which means that 
the operator A is larger than the operator B. Putting x = Ty, one gets also 
<y[T*ATly) > <YIT*BTIy> for all y for which this relation has a meaning, i.e. 
T 'AT  > TtBT. From the inequality A > B, one can hence derive the inequality 
T*AB > TtBT: 

A > B, --, T tAT > T*BT. (1) 

This theorem has some interesting corollaries. 
If  A > 0, and one chooses T = A -1, one gets immediately A -1 > 0. On the 

other hand, if A > 1, where 1 represents the identity operator, and one chooses 
T = A -1/2 (the positive square root), one gets directly 1 > A -1. If  A > 1, and 
one chooses T = A m, one gets A 2 > A. On the other hand, i f0  < A < 1, and one 
chooses T = A  m, one gets 0 < A  2 <A.  In summary, one obtains: 

A > 0 ,  --*A -1 >0 ,  (2a) 

A > I ,  --*A - 1 < 1 ,  (2b) 

A > 1, --~A 2 > A, (2c) 

0 < A < I ,  0 < A Z < A ,  (2d) 

Let us now consider some more complicated relations. If  A > B > 0, and one 
chooses T = B 1/2 (the positive square root), one gets immediately B -  1/2AB- 1/2 
>1,  and (2b) gives then (B-1/2AB-1/2)-t<l,  i.e. B+l/2A IB+1/2<1, or 
A - l <  B-~.  In the special case when B has no inverse, one has to proceed 
somewhat differently. Starting out from the relation A > B ~> 0, and choosing 
T = A-1/2, one gets 1 > A-1/2BA-1/2> 0, and Eq. (2d) gives then: 

0 <~ A -1/2BA -1/2. A -1/2BA -1/2 < A -1/2BA --1/2 (3) 

or  

0 <<, BA - 1B < B. (4) 

In summary one hence has: 

A > B > 0 ,  - - * 0 < A - 1  < B  -1 , (5a) 

A>B>~O, -oO<~BA-IB<B, (5b) 

where Eq. (5a) follows from Eq. (5b) whenever the operator B has an inverse. 
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3. Projection operators 

A self-adjoint operator O is said to be a projector, if it is idempotent so that 
0 2 = 0 .  In such a case, one has also O = O t O ,  which means that 
<xlolx>=<xlo'olx>=<OxlOx> O, or that 0 f > 0 .  The operator 
P - - 1 - 0  is also a self-adjoint projector, which gives the inequality 
P -- 1 - 0 >~ O, and hence one has the fundamental theorem that: 

0~< O ~< 1. (6) 

If  A > 0, and one chooses T = A 1/2 (the positive square root) and applies Eq. 
(1), one obtains the inequality: 

0 <~ A 1/20A 1/2 ~ A, (7) 

where the operator: 

A" = A 1/20A 1/2 (8) 

will be referred to as the inner projection of A with respect to the projector O. 
Another operator of essential importance in the theory has the form 

J = OAO, (9) 

and it will be referred to as the outer projection of A with respect to the projector 
O. The properties of the inner and outer projections will be studied in greater 
detail below. 

Dirac [2] considered the bracket <xly> as the product of a bra-vector (x  I 
and a ket-vector ]y>, and he also introduced the dyadic product in the form of 
a ket-bra operator R = Ib>(a defined through the relation Rx = b(a x )  and 
having the properties R * =  a ) ( b ,  R E = ( a  b>R, TrR  = ( a  b). We no te  in 
particular that, if (x  Ix ) # 0, then the operator R = Ix) (x  Ix ) -  l<x [ is a one- 
dimensional projector. 

It is easily shown that, if a linear manifold My of order p is spanned by the 
linearly independent set f =  {f~,f2,f3 . . . . .  fp}, the orthogonal projector Q on 
this manifold is given by the formula [3]: 

a = If)<flf? l(fl- (10) 

We will here and in the following let bold-face symbols denote rectangular 
matrices including row vectors, column vectors, and quadratic matrices with the 
understanding that the elements of the bold-face product C = A • B are defined 
by the relation Ckl = ~ Ak, B~z, i.e. one multiplies the columns of the first factor 
with the rows of the second factor. Since the set f is linearly independent, the 
matrix As= ( f l f )  has an inverse d =  ( f l f )  -1, and Eq. (10) has hence t h e  
explicit meaning: 

Q = ~ IA)dk,(ft[ ,  (11) 
k/ 

i.e. a double sum containing p2 terms. It is then easily shown that the operator 
Q satisfies the three fundamental relations: 

Q2 = Q, Qt = Q, Tr O =p. (12) 

If  one puts p = 1, 2, 3 , . . . ,  it is clear that one has the operator inequalities: 

O<~QI<~Q2<~Q3<~...<,NQp<~Qp+I<<.... ~<1. (13) 
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If  ~ = {(pk } is an orthonormal set which spans the entire Hilbert space our, the 
associated projector is the identity operator 1, and one gets the relation: 

1 = I~><~1 = Z I~k ><~kl, (14) 
k 

which represents a resolution o f  the identity. We note that the sum in the 
right-hand member is convergent in the operator sense [4]. For a linear operator 
T in general, one gets then: 

Tq~ = 1. T~ = I,P><~,l • T,p = m<~[T[~> = q~T, (15) 

where T = (q~lTlq~ > is the matrix representation of the operator T having the 
elements Tkt = <CpklTl~ol>. For the operator T itself, one gets further: 

T = 1. T .  1 = I~><~'1 " T .  I~><~1 = I~> <~'lTIq'> <~'1 = I~>T<~I 

= Y, I~°k >Tk,<~°,l = Z TklPtk, (16) 
k l  k l  

which is the expansion of the operator T in terms of the fundamental units 
Ptk = [~Pk ><~Pt[, which apparently span the operator space [5]. 

If  a self-adjoint operator A has a discrete spectrum {ak } associated with the 
normalized eigenfunctions uk, so that Au k = akuk, then one has: 

A = 1. A ' I = E  lu~>Ak,<u,I = E  [uk>ak<ukl =EakPkk, (17) 
k l  k k 

where Pkk = l Uk >(Ukl is a one-dimensional projector satisfying the inequality 
0 ~< Pkk ~< 1. Equation (17) is the spectral resolution of the operator A, and we 
note particularly that, if A has a lowest eigenvalue a0, so that ak/> ao for all k, 
then akPkk >~ aoPkk, and one gets: 

A = E akPkk /> ao Z Pkk = a0" 1. (18) 
k k 

In such a case, the operator A is always larger than its lowest eigenvalue 
multiplied by the identity operator. This theorem may also be generalized to the 
case when the operator A has a spectrum which is fully or partly continuous. 

4. The general variation principle 

Of essential importance in both the theoretical development and the applications 
of modern quantum theory is the general variation principle, which says that the 
Schr6dinger equation H ~  = E ~  for eigenfunctions ~ in ~ is equivalent with 
the relation 6 ( H )  = 0, where ( H )  = <~ ' ln l~ '> /<~ ' l  ~'> is the expectation value 
of the self-adjoint Hamiltonian operator H. For any quotient E = A/B ,  one has 
fiE = (B 6A - A 6B) /B  2 = (SA -- E 6B)/B,  i.e. 

6<H>={<6~'IH--E" 11~'> + < 6 ~ ' l g - - E "  l]~>*}/<~el~e>, (19) 

for arbitrary variations 6~, which relation immediately proves the theorem 
without any further restrictions on the Hamiltonian H. In the application of this 
principle, one looks for stationary points in general: maxima, minima, and 
saddle points. It should be observed that this variation principle may hence be 
applied also to Dirac's relativistic Hamiltonian. 
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5. Operators bounded from below 

Some of the self-adjoint operators studied in quantum theory may be bounded 
over the entire Hilbert space, others may be bounded from below, others may be 
bounded from above, whereas others may be completely unbounded. In this 
section, we will devote our interest to operators A which are bounded from below 
in the sense that its expectation values fulfill the inequality (A)~> e, which 
relation is equivalent with the operator inequality A >/e • 1. It is interesting to 
observe that this property is characteristic for the non-relativistic molecular 
Hamiltonian defined by the relation: 

H = Zp2 /2mk  + Z eke,/rk, 
k k < l  

=e 2  ~ Z g Z h / R e h + ~ p 2 / 2 M g + ~ , ( p 2 / 2 m - e 2 ~ Z g / r i ~ + e 2 ~  1/rij, (20) 
g < h  g i \ g i < j  

where the indices k and l run over all particles involved, whereas the indices g 
and h run over the atomic nuclei considered as point charges and the indices i 
and j over the electrons. Many molecular theoreticians would take this property 
for granted on physical grounds, but it should be observed that it is a strict 
mathematical property. From the exact solution of the hydrogen-atom problem 
and Eq. (18), one has the inequality: 

p2/2m --  e eZg / r ig  >~ ( - -  m e 4 Z  2 /2h2 )  • 1. (21) 

If  A is the numer of atomic nuclei and N the number of electrons, one gets the 
following rough estimate of the third term in the Hamiltonian of Eq. (20): 

~i g i g g 

i>}-', y~ (I/A)(-me4A=Z2/2h2) • 1 = ( - m e 4 A N / 2 h 2 )  • 1 y~ Z 2.  (22) 
i g g 

All the other terms in the Hamiltonian of Eq. (20) are positive definite, and this 
means that the total Hamiltonian is bounded from below. At the same time, this 
Hamiltonian is an excellent example of the complications which may occur in the 
elementary molecular theory. 

Since the molecular Hamiltonian of  Eq. (20) is invariant under translations 
and rotations of the three-dimensional space coordinate system, the total mo- 
mentum and the total angular momentum are immediately constants of motion. 
The first statement implies that one may separate the motion of the center of 
mass ~ defined through the relation: 

~ = ~ m k r k / ~ m k ,  M=~,mk,k. (23) 

from the remaining part of the Hamiltonian, so that: 

H = p { / 2 M  + H', (24) 

where H '  depends only on the relative coordinates r~ = r k - t o ,  with respect to 
a reference point r0 moving with the system. In such a case, one may write the 
total wave function in the product form ~ = ~o(¢)~' and the energy as a sum 
E = E¢ + E'.  Since E¢ has a continuous spectrum which goes from 0 to + 0% and 
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which is superimposed on the spectrum of E' ,  it is clear that the bottom of the 
spectrum of E has continuous character. 

The Coulombic Hamiltonian H' ,  which has the center of mass motion 
removed, is of essential interest both in molecular physics and in mathematics, 
and a great deal of work has been carried out by the mathematicians during the 
last few decades as to the spectral properties of this operator with the results 
reported to the quantum chemists particularly by Professor Barry Simon at 
California Institute of Technology. 

The relation H'7~' = E'~U' as a differential equation has, of course, solutions 
7 ~' for every real or complex value of  E' .  It becomes an eigenvalue problem, if 
one requires that the solutions 7 j '  should satisfy certain boundary conditions, and 
the possible eigenvalues E '  corresponding to such solutions give then the 
spectrum {E'} associated with the boundary conditions. The boundary condi- 
tions usually introduced into the quantum theory of  matter are of two types: 

(1) If  an eigenfunction 7 t '  is quadratically integrable, i.e. if it belongs to the L 2 
Hilbert space, then the associated eigenvalue E '  is discrete, and the associated 
eigenstate is closed and correspond to the existence of  an atom or a molecule. 

(2) If  an eigenfunction 7 j '  does not belong to L 2 but remains finite even at 
infinity, then the associated eigenvalue E '  belongs to a continuous part of the 
spectrum, and the associated state is a scattering state corresponding to a 
molecular collision or a chemical reaction. 

It is obvious that the nature of a particular eigenvalue E '  is of  fundamental 
importance for the physical and chemical interpretations of the theory, and we 
will temporarily refer to it as the key problem in spectral theory. At this point, 
it is somewhat disturbing that the condition (2) is not more explicitly related to 
t he  L 2 Hilbert space, and we will come back to this problem below. 

One is, of  course, particularly interested in the nature of the lowest eigen- 
value Eo of the spectrum of  H' ,  and an answer is provided by the WHVZ- 
theorem named after Weyl, Hunzinger, van Winter, and Zhislin [6], which says 
that, if one can find a quadratically integrable trial function 4~ such that its 
expectation value ( H ' )  is lower than the energy of all separated clusters, then 
the lowest eigenvalue E o of the system is necessarily discrete and corresponds to 
the existence of a closed state, i.e. to the existence of an atom or a molecule. It 
is interesting to observe that the quantum chemists have used this theorem 
intuitively since the start of  computational molecular physics, and that this 
conjecture has now an exact mathematical basis. For the sake of  simplicity, we 
will in the following assume that we consider only Hamiltonians with the center 
of mass motion removed, and we will then drop the prime on H' .  

6. Variation principle for operators bounded from below 

In addition to the general variation principle mentioned above, one has in the 
quantum theory of matter used a special Rayleigh-Ritz variation principle [7] 
which is valid only for operators bounded from below, and which has many 
interesting properties. Even if it is studied in great detail in many quantum- 
mechanical textbooks, we will here look at it from the point of view of  operator 
inequalities. For this purpose, we will consider a self-adjoint Hamiltonian H, 
which is bounded from below so that ( H )  > ~, or which is the same H > ~ • 1, 
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where 1 is the identity operator. We will denote the best lower bound by Eo, and 
the key problem is now whether one has H > Eo or H >~ E0. In the former case, 
the bound Eo is n o t  attained by any trial function, and this case will occur if Eo 
belongs to the continuum. In the second case, there exists a wave function 7"o, 
for which the minimum Eo is attained, so that ( T o [ H [ 7 " o ) / ( T o [  T o ) =  Eo, or: 

<7"01H- E0" 117"0> = 0. (25) 

At this point, it is convenient to use a lemma which says that, if f2 is a 
semi-positive operator with the property f2/> 0, and (cplf2 [q~ ) = 0, then one has 
f2~o = 0. For  the proof, one puts q~ = ~, + 2q~, where 2 is a real parameter, which 
gives <q~lf2l~b > = <•lf2 I~b> + 22 Re{<0lol,p>/> 0 and leads to a contradiction 
unless <O[Q ]9)  = 0 for all ~, which proves the theorem. Putting f2 = H -  Eo" 1 
and using (25), one obtains: 

(H - Eo'  1)7"o = 0, (26) 

which means that the lower bound Eo is a discrete eigenvalue associated with the 
wave function 7"0 corresponding to a closed ground state. 

A well-known theorem says that the eigenfunctions to H associated with 
different discrete eigenvalues are orthogonal to each other, or - for a degenerate 
eigenvalue - may be chosen in that way. In the next step, it is hence natural to 
consider the lowest bound for the expectation value <H>, when the trial wave 
function * is assumed to be orthogonal  to the normalized eigenfunction 7"0- 
Denoting the best lower bound by E~, one has either <H> > E~ or (H> t> El. If  
Oo = [7"o>(7"o[ is the projector associated with the eigenfunction, then 
Po = 1 - O0 is the projector for its orthogonal complement, and the trial function 
• may then be written in the form * = Po 7", where 7' is an arbitrary element of  
L 2. One gets directly <* 17"o> = <P07" [ 7"0> = (7" [PoT'o> = 0, which is the prop- 
erty desired. We note further that one has H O o = E o O o =  OoH,  i.e. that Oo 
commutes with H,  and the same is then true also for Po. From the relation: 

< H >  = < * l g l * > / < *  [ * >  = <PoT'lHIPoT'>/<PoT'lPoT'> 

= <7"lPoHPolT'>/<7"iPoPo[7"> = <7"lHeolT'>/<7"e01 7"> > E , ,  (27)  

one gets immediately the operator inequality: 

(H -- E , .  1)e 0 > 0, (28) 

which we will now study in greater detail. One observes that one has the relation 
H e o  = H - EoOo = H - Eo(1 - Po) = ( H  - Eo) - EoPo,  and Eq. (27) gives then 
the operator inequality: 

1 - O0 = P o ( < H )  - -  Eo)/(E~ - Eo).  ( 2 9 )  

It is easily shown that this inequality is equivalent with the well-known E c k a r t ' s  
criterion [8] for the accuracy or a trial wave function * approximating the 
ground state. Assuming that * is normalized to unity and the phase chosen so 
that the binary product ( * [ T o )  is positive, so that 0 <  < * [ T o ) <  1, one has 
II * - 7"0 II = 2(1 - <417"o>) and  further from (29): 

1 - <* [ 7Jo> 2 < (<H> -- Eo)/(E~ - Eo), (30) 

which relation says that if <H> converges towards Eo, then <*[7~o> converges 
towards 1, the quantity I1" - 7"0 II converges towards zero, and the trial function 
• towards the exact eigenfunction 7"0 for the ground state. 
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If, on the other hand, the lowest bound E1 is attained for the wave function 
~1, then one has the inequality (H>>~E1, which means that <~11H[~1>/ 
<~ffl]~'/1> />El ,  or: 

<~UllH-E,. 11 e1> >/0. (31) 
Since f2 = H - E1 • 1 ~> 0, the previously used lemma will now give the result: 

(H - E 1 • 1)~ 1 = 0, (32) 

which means that ~gl is the eigenfunction associated with the eigenvalue El, 
which is now the next lowest eigenvalue. From now on, we will assume that ~1 
is normalized to unity and that it has the projector O1 = 17/1 >(~11" 

In order to proceed, we will then consider the expectation value <H> for all 
trial wave functions ~ which are orthogonal to both ~u o and ~ul, and which 
hence have the general form ~ = P171, where P1 = 1 - Oo - O1. We note that the 
projectors Oo and O1 are mutually exclusive, so that OoO1 = 0, and that Oo and 
O1 as well as P1 commute with H. We will denote the best lower bound to (H>  
by E2, which gives: 

IHI = IHP, I IP11~P>/> g2, (33) 

or 

<~P I(H - E2" 1)P, ]~> i> 0, (34) 

which gives the operator inequality: 

(H - g 2 • 1)P 1 t> 0, (35) 

which is easily generalized and ultimately gives an inequality connecting the 
spectral resolution of  H and the resolution of  the identity. We note that if the 
equal sign is attained for the wave function ~2, the previously used lemma shows 
that one has the relation: 

(H - E 2 • 1)~u 2 = 0, (36) 

which shows that the function ~g2 is an eigenfunction to H associated with the 
next-next lowest eigenvalue E2. One then proceeds by considering all trial wave 
function • orthogonal to the exact eigenfunctions ~o, ~gl, ~u2, etc. We note that 
the Rayleigh-Ritz variation principle gives upper bounds to the true eigenvalues 
in order from below. It is sometimes claimed that this principle is not useable for 
determining the properties of the low-lying excited states, since it requires the 
knowledge of the exact eigenfunctions ~g0, ~ul, 7/2, • • • for the lower states, but 
fortunately there exists a well-known generalization of this principle to which we 
will return below. The Rayleigh-Ritz  variation principle is in fact the basis for 
many quantum-mechanical applications: the Har t r ee -Fock  (HF)  method, the 
method of superposition of  configurations often referred to as the configura- 
tional interaction (CI) method, etc., and it is certainly the foundation for an 
essential part of  the large-scale computational efforts. 

7. Some properties of outer projections 

In this subsection, we will study the properties of  the outer projection of an 
operator as defined by Eq. (9). For  this purpose, we will consider a self-adjoint 
Hamiltonian H which is bounded from below, so that H > a .  1, and a self- 
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adjoint projector P satisfying the relation p 2  ---_ p of order p = Tr P, which may 
even be infinite. The outer projection is then defined by the relation: 

/7 = PHP, (37) 

and we note that even this operator is bounded from below, since one has 
H > a • P, where a • P >t 0 if a is positive, and a • P ~> a if a is negative. Next we 
will consider the eigenvalue problem: 

H 7  j = ETL (38) 

Multiplying this relation to the left by P, one obtains PET t = E7 j, which means 
that, for E # 0, one has P}P = 'P, i.e.: 

P}P = }P, (39) 

and, for /~  # 0, all the eigenfunctions o f / 7  are hence situated in the subspace of  
P. All functions in the subspace of (1 - P) are, of course, trivial eigenfunctions 
to /7 associated with the special eigenvalue /~ = 0, but there may also exist 
non-trivial eigenfunctions in the subspace of P associated with the eigenvalue 
/~ = 0. From now on, we will concentrate our interest to eigenfunctions T in the 
subspace of P satisfying Eq. (39). For  such functions, one has the identity: 

<}P[HI~7> = <PtP[HIP~P> = < T I P H P I ~  > = <TI/71T>, (40) 

which we will now use to compare the eigenvalues o f / 7  and H, and prove the 
general theorem that the eigenvalues t o / 7  are upper bounds to the eigenvalues 
of H in order from below: 

E~ > Ek, (41) 

provided that the spectra of /7 and H both start with a series of discrete 
eigenvalues. If  'P0 is the normalized eigenfunction to / 7  associated with the 
eigenvalue E 0 then the Rayleigh-Ritz  variation principle applied to H gives the 
inequality: 

fo  ~< < 'Poln[¢o> = <tP01/Tl~0> = E0. (42) 

In order to proceed, one considers the auxiliary function ~7 a = ~Poaol + k~,a11, 
which is normalized to unity due to the condition lao,[ 2 + [anlZ = 1, and which is 
further chosen orthogonal to the function To, so that 
(~/OI/~l > = <~0[ !PO>a01 "~ <~T'IO[ IPl >all = O, Applying the Rayleigh-Ritz  principle 
once more, one gets: 

E~ <~ (511HI5~) = <611/7151> 

= <l~0a01 + }Pla11[/7[~oa01-q- ~ l a l l >  
=/7:o[aol ]2 +/~1]a1~[ 2 

</~1 (43) 

In order to proceed, one considers the auxiliary function: 

52 = kff0~o2 + T,~12 + T2a22, (44) 

and by normalizing it to unity and chosing it orthogonal to ~o and 711, one 
proves further that: 

E2 ~< Eo]~oll 2 + Ellalll  2 + E2la21 [2 ~< E2, (45) 
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etc. As we will see below, the outer projections play a fundamental role in 
quantum theory: in the discussion of the expansion methods, in perturbation 
theory, in studying the properties of resolvents, etc. 

8. Expansion methods 

A characteristic feature of the abstract Hilbert space ~ is that it is separable, i.e. 
that there exists an enumerable set o ~ ' =  {gl, g2, g3 , ' "  "} which is everywhere 
dense in the space [1]. Applying Schmidt's successive orthonormalization proce- 
dure to this set, one obtains an orthonormal set q~ = {~01, q~2, (P3 . . . .  } which is 
complete, and it is then easily shown that for every element 7 t one has an 
expansion theorem: 

7 t = q~a = ~ ~okak, (46) 
k 

where the infinite sum is convergent in the norm. In the computational applica- 
tions, it is of course not possible to handle an infinite basis, and one has to be 
satisfied by using a finite basis f =  { f l , f E , f 3 , . . .  ,fp} of order p consisting of n 
linearly independent but not necessarily orthonormal functions fk, and the best 
approximation in terms of this basis, 7-' ~ ~kfkCk, is then derived by using the 
Rayleigh-Ritz variation principle, which leads to the conventional secular 
equation. 

We will here approach this problem in a slightly different way, by considering 
the outer projection of the Hamiltonian H with respect to the projector Q 
defined by Eq. (10): 

I~ = QHQ, O = [ f ) ( f l f ) - l ( f l ,  (47) 

where A = ( f l f )  is the metric matrix of order p × p, and its eigenvalue problem: 

H7 j = E7 j. (48) 

Since ~ is in the subspace of Q and satisfies Eq. (39), it is possible to expand 
exactly in terms of this basis: 

~P = Q ¢  = [ f ) ( f l f ) - l ( f l ~  = f ( f l f ) - l ( f l 7  t )  =fe,  (49) 

where 

e = ( f l f ) - l ( f l  ~ ) .  (50) 

For the outer projection lq, one has further: 

H = QHQ = I f )  ( f [ f ) - l ( f l  H i f )  ( f l f ) - l ( f l ,  (51) 

and this means that the eigenvalue Eq. (48) takes the form: 

I f )  ( f ] f ) - ~ ( f l H ] f ) c  = Efc, (52) 

where one may compare the coefficients f o r f o n  both sides. Multiplying Eq. (52) 
to the left by ( f [ ,  one gets also: 

( f l H l f ) c  = E ( f  I f ) c ,  (53) 

o r  

( f i l l -  E " [f  )c = 0, (54) 
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which is a system of p linear equations with the secular equations: 

[ < f i B -  E .  i l l>  L = 0, (55) 
having p roots El,  E2, E3 . . . .  , Ep, which are all upper bounds to the true 
eigenvalues El,  E2, E3 . . . . .  Ep to the Hamiltonian H according to the general 
theorem for outer projections. In this approach, there are no approximations 
involved, and all the eigenfunctions ~Pk belong to the L 2 Hilbert space. If  one 
increases the number p of  basis functions, it is remarkable that some of the 
eigenvalues o f / 4  decrease very slowly, whereas others seem to be less stable, 
and the standard interpretation is that the former approximate discrete eigen- 
values of H, whereas the latter in some way may be connected with the 
continuum. 

One may wonder how the continuum eigenfunctions, which are not 
quadratically integrable, may in any way be connected with a method which 
renders eigenfunctions in L 2. The answer is that, the continuum eigenfunctions 
which are usually defined by boundary conditions of  the type (2) treated above, 
may also be defined through the relation [10]: 

7S(E) = d~(E)  /dE, (56) 

where ~(E) should be an element of L 2. That  this definition is meaningful is 
illustrated by the simple example of a plane wave qJ(k)= exp(ikx) with the 
principal function (with respect to k): 

q~(k) = {exp(ikx) - 1 }/ix, (57) 

which belongs to L 2. Equation (56) implies that one has a limiting procedure of 
the form: 

7s(X, E) = lim {~(X, E + 1/n) - ~(X,  E)} /n  = lim ~ln(X), (58) 

which means that there exists a series of elements ~1, 7s2, 7s3 . . . .  in L 2 which 
converges towards the eigenfunction 7 s in the continuum. It is obvious from the 
definition that this cannot be a convergence in the norm, and that Eq. (58) 
implies a point-by-point convergence, i.e. that: 

17t(X, E) - 7s,(X) [ ~< e, whenever n > N(X,  n), (59) 

and that this convergence, of  course, cannot be uniform. Many computational 
practitioners have found out that this is an excellent way to obtain wave 
functions in the continuum, and there is no question that this approach de- 
serves a more detailed invest igat ion-  particularly since many quantum 
chemists working with the Coulombic Hamiltonian of Eq. (20) have found it 
impractical to separate the center of mass motion, since this is usually mixing 
up the electronic and nuclear coordinates in a complicated way. 

Let us now consider a sequence of outer projections H1,/-/2 . . . .  , Rp, 
defined by the relation: 

Hk = QkHQk. (60) 

Since each Hk is an outer projection of  the next member / t k  + 1 of the sequence, 
it is evident that the eigenvalues o f / 1  k are upper bounds to the eigenvalues of 
/tk + 1 in order from below, which is the content of the well-known Hylleraas-  
Undheim separation theorem [9]. 
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9. Eigenvalue properties derived from operator inequalities 

If  a self-adjoint operator A is positive definite, so that A > 0, it is clear that all 
its eigenvalues ak must be positive, and - reversely - if all the eigenvalues of an 
operator are positive, it follows from its spectral resolution that the operator 
must be positive definite. In general, however, it is somewhat more difficult to 
derive eigenvalue properties from the existence of an operator inequality, and it 
is hence worthwhile to note the existence of the following fundamental theo- 
rem: 

If  A and B are two self-adjoint operators bounded from below having the 
properties that A > B and D(A) belongs to D(B), the eigenvalues have the 
property that ak > bk in order from below. For the proof, we will denote that 
eigenfunctions of A and B by the symbols Uk and Vk, respectively, so that: 

Auk = akUk, BVk = bkVk. (61) 

Applying the Rayleigh-Ritz variation principle to the operator B, one has 
immediately: 

bo <~ (uolBluo) < (uo[A [u0) = a0. (62) 

One observes that all the eigenfunctions uk of A belong to D(B). In order to 
proceed, one considers the auxiliary function ~o~ = Uo% 1 + u~a~, which is nor- 
malized to unity and chosen orthogonal to the function v~. The Rayleigh-Ritz 
variation principle gives in this case: 

bl ~< (~Pl [B 1~o 1 ) < ((~1 [A 1~o 1 ) = (Uoaol -~- u I all  [A [Uo~ol 71- u 1 all ) 

=aoraolI2 + alla. 12 ~ a~. (63a) 

The next auxiliary function has the form ~P2 = U o a o 2 ~ - u l a l 2  "q- U2a22, and this 
function is supposed to be normalized to unity and to be chosen orthogonal with 
respect to both Vo and vl, which gives: 

b2 ~ <~o=]a [~p2> < <~P21A ]~0=> = <UoC~o= + Ulal2 -]- uz2a==lA ]UoC~o= + Ulal2 + u2a22) 

= aola0212 + a~ Fa,2l 2 + a2[a2z] 2 ~< a2, (63b) 

etc. We note that the auxiliary functions in the proof are chosen in essentially the 
same way as the auxiliary functions occurring in the treatment of the outer 
projections given above. This theorem has become of essential importance in 
many quantum-~echanical applications. 

10. Lower bounds to energy eigenvalues 

Since the Rayleigh-Ritz method provides upper bounds to the energy eigenval- 
ues, it is important to find some methods which would provide also lower bounds 
to these eigenvalues. The elementary methods available [ 11] were not particularly 
useful, and this field was almost dormant until Alexander Weinstein and his 
group at the University of Maryland started a completely new approach based 
on operator inequalitites and the fundamental theorem mentioned above [12]. In 



On operator inequalities as tools in quantum theory 149 

the case, when the total Hamiltonian had the form H = H0 + V, where the 
perturbation V is positive definite, they replaced V by a lower bound V' given by 
Aronszajn [13], which in our notations would take the form: 

V" = VIg) ( g l V [ g ) - 1 ( g  IV, (64) 

where g = {gl, g2, g3 . . . . .  gp ) is a set of p linearly independent basis functions 
and V' ~ V, when the set becomes complete. The so-called intermediate Hamilto- 
nian H'  = Ho + V' would then be a lower bound to the original Hamiltonian H, 
and the inequality H '  < H would then give E~ < Ek for the eigenvalues in order 
from below. The eigenvalue problem H ' T J ' =  E ' 7  ~' was usually solved by a 
modified form of localized perturbation theory [14], and this approach would 
only run into difficulties if part of the spectrum of the unperturbed Hamiltonian 
Ho would be a continuum. 

Inspired by the work of the Weinstein school and particularly by a series of 
lectures by David Fox and Norman Bazley at the Uppsala Summer Institutes in 
the early 1960's, the Uppsala and Florida projects tried to attack this problem 
from a slightly different point of view. If  A is positive definite, A > 0, Eq. (7) 
shows that the inner projection A'  with respect to the self-adjoint projector O 
defined by Eq. (8): 

A'  = A 1/20A 1/2, (65) 

provides a lower bound to the operator A. If  one replaces the projector O by the 
projector Q defined by Eq. (10), one obtains the special expression: 

A'  = A 1/2QA 1/2 = A l/2[f) ( f [ f ) - l ( f l A  1/2, (66) 

and making the substitution h = A 1/2[f), one obtains finally 

A ' =  Ih) (h  [A-11h)- l (h l ,  (67) 

which is the form of the inner projection we are going to use. Here 
h = {hi, h2, h3,. • . ,  hp } is any linearly independent set o fp  basis functions in the 
space under consideration. We note that, for any linear operator A having an 
inverse A - 1  the inner projection A' converges towards A when p ~ ~ ,  and the 
set h becomes complete and  that the convergence is from below whenever A is 
positive definite or has a finite negative part [15]. 

The primary goal was to try to find a formal exact solution to the 
Schrrdinger equation H7 j = E 7  ~ by means of partitioning technique [16], and 
then to derive lower bounds to the eigenvalues by using inner projections. For 
this purpose, one introduces a normalized reference function ~o and a boundary 
condition in the form of the intermediate normalization (~017~ ) = 1, which gives 
a spectrum {E}~. It is easily shown that, if one introduces a complex variable z 
and considers the inhomogeneous Schr6dinger: 

(H - z • 1)~Pz = aq~, (68) 

where the parameter a is determined by the boundary condition (q~17~)= 1, 
and further the projection P = 1 - [q~)(q~[ having the property P~z = g t  _ q~, 
then one has P ( H -  z .  1)kg z --0, and the explicit solution: 

~z -- (1 -- PH/z) -lq~ = W~p, (69) 
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where 

W = (1 - P H / z )  1, (70) 

is often referred to as the wave operator, which transforms the reference func- 
tion 9 into the exact solution tP z. Using the identities ( A - - B ) - 1 =  
A - 1 _~. ( A  - -  B)  - IBM - 1 and (1 - R S )  - IR  = R(1  - S R )  - 1, one obtains the 
transformation: 

W = 1 + TH,  (71) 

with 

T = ( z .  1 - P H ) - I P = P ( z  • 1 - H P )  -1 = P ( z .  1 - P H P ) - 1 P ,  (72) 

where the operator Tis often referred as the reducedresolvent .  It should be observed 
that it contains the outer p ro jec t ion /7  = P H P  of  the Hamiltonian and that it 
becomes singular for z = Ek but not for the ordinary eigenvalues. Multiplying Eq. 
(68) to the left by ( 9  [, one obtains a = ( 9 [ H  - z -  l[~z ) - ( 91Hl~z  > - z = 

f ( z )  - z, where f ( z )  = <91Hl '= > - <91HWIg> -- < g i n  + HTHIg> becomes a 
key function in the theory. It is easily shown that, if z is chosen on the real axis, 
then there is always a true eigenvalue E situated between z and zl =f (z ) ,  and the 
function f ( z )  is hence often referred to as the bracket ing funct ion.  Since the 
inhomogeneous Eq. (68) goes over into the Schr6dinger equation for a(z) = 0, one 
may find the eigenvalues z = E by solving the "algebraic" equation: 

a(z) =f (z )  - z = 0, (73) 

which actually corresponds to the reduced characteristic equation for the prob- 
lem. I f  it is solved by the Newton-Raphson  method, the result corresponds to 
the use of the quantum mechanical variation principle. For  more details, the 
reader is referred elsewhere [16]. If  the total Hamiltonian has the form 
H = H0 + V, one finds that - in addition to the wave operator - the key opera- 
tor in the theory is the reaction operator t defined by the relation: 

t = (1 - V T o ) - I V ,  t -1 = V -1 - To, (74) 

where T o = (z .  1 -  P H o ) - I P  = P ( z .  1 -  P H o P ) - ~ P .  In the simplest case, the 
reference function 9 may be chosen as the normalized eigenfunction 90 of  Ho 
associated with the eigenvalue Eo, and then the total energy E may be written 
in the form: 

E = Eo + <9o I t [690 >, (75) 

and one can then find a lower bound by using the inner projection t '  of  the 
reaction operator t according to (67): 

c =  Ih> <hl t - l lh>- l<hl  =-Ih><hrV -1 - ToIh>-l<hl. (76) 
Using this approach combined with the properties of the bracketing function 

f ( z ) ,  lower bounds for the eigenvalues of  quite a few simple systems have been 
calculated [ 17] even in the case when Ho has a partly continuous spectrum. It 
should be pointed out, however, that - in spite of this good start - there is still 
no good theory for the lower bounds of  many-electron systems, and that this 
important field is still waiting to be developed. 
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11. Some properties of the resolveut; connection between inner 
and outer projections 

In the studies of eigenvalue problems of the type (H - E • 1)7 ~ = 0, one of the 
key operators in mathematics is the resolvent. 

R(z) = (z . 1 - H ) - l ,  (77) 

where z is a complex variable. The eigenfunctions 7 j are the same, but the 
eigenvalues r are transformed according to the relation r = ( z -  E) -1 .  The 
importance of the resolvent is stressed by the fact that, even if the Hamiltonian 
is unbounded in one way or another, the resolvent is always bounded as long as 
]z - E] > 0, and one has the relation ][R~ [I < (1/0)][4~ [1" The resolvent has its 
name from the fact that it immediately renders a solution to the inhomoge- 
neous Eq. (68) in the form: 

7Jz = - aR(z)q~ = R(z)q~ / ( ~o I R(z ) k0 ),  (78) 

where, in the last member the value of the parameter a is chosen so that the 
intermediate normalization (~0]TJz)= 1 is automatically satisfied. In this ap- 
proach, the eigenvalues z = E are found by looking for the simple poles of the 
denominator W(z)= (q~[R(z)1~0), which has become known as the Weinstein 
function. It is evident that, for z = E, the right-hand member takes the form 
~ / ~ ,  but one can avoid the rather cumbersome limiting procedure by instead 
using the resolvent identity [18]: 

R(z)q~/(~o [R(z)k0) = (1 - PH/z)-1~o, (79) 

where P - - 1 -  ]q~)(q01 is the projector used above. We note that this identity 
connects the resolvent method with the partitioning technique. 

Resolvents are used in many parts of theoretical physics, particularly in 
connection with the so-called propagator methods, and we will now try to 
approximate them in terms of inner projections. According to Eq. (67), one 
has: 

R'(Z) = [ h ) ( h [ R - l [ h ) - l < h  I = [ h ) ( h ] z .  1 - H l h ) - l ( h [ ,  (80) 

and we will now look for its singular points, which obviously occur for the 
zero-points of the determinant ](hlz .  1 - H I h )  ]. However, in connection with 
Eq. (55), we have already shown that, if Q = I h ) ( h i h ) - l ( h ]  is the projector 
associated with the subspace of order p spanned by the elements 
h = {hi, h2, h3 . . . .  , hp }, then the zero-points of  the determinant 
I(__hlz. 1 - H [ h ) ]  correspond to the exact eigenvalues of the outer projection 
H = QHQ. Hence one has the general theorem that the singularities of the 
inner projection of  the resolvent are identical with the eigenvalues of the outer 
projection of  the Hamiltonian with respect to the same linear manifold, o r -  
which is the s a m e -  that the eigenvalues of R'  are given by the formula 
r~  = (z - -  E k ) -  1 

This statement has an important corollary. If  H is a Hamiltonian bounded 
from below, so that H > e .  1, then for real values of z one has 
H - z • 1 > ~ • 1 - z .  1 > 0, provided that z < e. According to Eq. (5a), one ob- 
tains 0 < ( H - - z  • 1) -1 < (e • 1 - z  • 1) -1, which means that the operator - R ( z )  
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is positive definite for z < 0~. In such a case, the operator inequality: 

0 < - R ' ( z )  < - R ( z ) ,  (81) 

gives for the associated eigenvalues in order from below: 

0 < - ( z  - E~) -~ < - ( z  - e k ) - ~ ,  (82) 

or - ( z  --Ek) > --(z --Ek) > 0 ,  i.e. /~k - -z  >Ek  - - z  > 0  for z <~ ,  or simply: 

E~ > Ek. (83) 

The fact that the eigenvalues /~k of  the outer projection /1 = QHQ are upper 
bounds to the true eigenvalues Ek may hence be associated with the operator 
inequality of  Eq. (81). 

12. Concluding remarks 

We have here concentrated our interest on the importance of operator inequali- 
ties as tools in the quantum theory of matter, but they are of  course of great 
importance also in other fields. As an example, we may take Eq. (5b) which in 
econometrics is known as Becker's lemma [ 19]. In the case when the equality sign 
is valid, one observes that the operator A -  1/eBA- 1/2 is a projector, and Kalman 
[20] has used this fact for a new construction of the least square method. In 
general, linear algebra, operator inequalities, and the projection operator formal- 
ism are of  essential importance in the search for linear relations in the natural 
sciences [21]. 

In conclusion, one can certainly say that operator inequalities are a strong 
mathematical tool which has so far been used only to a small extent in the 
quantum theory of  matter, and for which one can hence expect an important 
development in the future. In this field it would probably be good, if - following 
the example of  Professor Alberte Pullman - one would concentrate more on the 
development of  the theoretical methods before one starts large-scale calculations, 
since this would certainly lead to a richer development of  our entire field. In this 
connection Professor Alberte Pullman has been a great pioneer. 
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